ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag₃PO₄ hybrids for degradation of methyl orange

Jing Cao*, Bangde Luo, Haili Lin, Benyan Xu, Shifu Chen

College of Chemistry and Materials Science, Huaibei Normal University, 100 Dongshan Road, Anhui, Huaibei 235000, China

ARTICLE INFO

Article history:
Received 29 September 2011
Received in revised form 28 February 2012
Accepted 1 March 2012
Available online 7 March 2012

Keywords: AgBr/Ag₃PO₄ Anion-exchange method Ag nanoparticles Reaction mechanism

ABSTRACT

Novel AgBr/Ag₃PO₄ hybrids were synthesized via an *in situ* anion-exchange method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS) and UV-vis diffuse reflectance spectroscopy (DRS). Under visible light (λ > 420 nm), AgBr/Ag₃PO₄ degraded methyl orange (MO) efficiently and displayed much higher photocatalytic activity than that of pure AgBr or Ag₃PO₄. X-ray photoelectron spectroscopy (XPS) suggests that AgBr/Ag₃PO₄ transformed to be Ag@AgBr/Ag₃PO₄@Ag system while remained good photocatalytic activity after 5 times of cycle experiments. In addition, the quenching effects of different scavengers proved that reactive $^{\circ}$ OH and $^{\circ}$ played the major role for the MO degradation. The photocatalytic activity enhancement of AgBr/Ag₃PO₄ is closely related to the efficient separation of electron–hole pairs derived from the matching band potentials between AgBr and Ag₃PO₄, as well as the good electron trapping role of Ag nanoparticles *in situ* formed on the surfaces of AgBr and Ag₃PO₄ particles during the photocatalytic reaction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For solving many environmental and energy issues, semiconductor-based photocatalysis is taken as a promising avenue [1–3]. In order to highly utilize the solar energy, developing efficient visible-light-driven photocatalysts (such as BiOX (X=Br, I) [4–7], Bi $_2$ WO $_6$ [8,9], BiVO $_4$ [9,10], Ag $_2$ Mo $_4$ O $_1$ 3 [11] and Ca $_x$ Zn $_{(1-x)}$ N $_x$ O $_{(1-x)}$ solid solutions [12], etc.) consequently has become an imperative topic in current photocatalysis field.

Lately, as nonmetallic p-block elements, P or C elements were incorporated into a simple oxide of narrow band gap (Ag_2O), which has been used as a strategy to design new visible-light-driven photocatalysts, such as Ag_3PO_4 [13] and Ag_2CO_3 [14]. The Ag_3PO_4 (indirect band gap of 2.36 eV as well as a direct band gap of 2.43 eV) [13,15] has been recognized as one of the most efficient visible-light-driven photocatalysts because of its excellent photooxidative capabilities for organic dye decomposition and O_2 evolution from water under visible light irradiation [13]. Through controlling particle size [16], shape and facet effects [17] of Ag_3PO_4 crystals, the photocatalytic activity of Ag_3PO_4 can be further enhanced. However, the unwanted and uncontrolled photodecomposition by light and the low structural stability in water of Ag_3PO_4 decreased the photocatalytic activity during the photocatalytic reaction, which

In recent years, Ye and co-workers [18] have reported that the AgX/Ag_3PO_4 (X = Cl, Br, I) heterocrystals prepared by *in situ* ion-exchange method embodied some advantages compared to the single Ag_3PO_4 . Firstly, the insoluble AgX nanoparticles could effectively inhibit the dissolution of Ag_3PO_4 in aqueous solutions [18]. Secondly, AgX and Ag_3PO_4 had matching band potentials, which facilitated the fast transfer and separation of the photoinduced carriers. Thus, AgX/Ag_3PO_4 (X = Cl, Br, I) system is a more promising and fascinating visible-light-driven photocatalyst than pure Ag_3PO_4 .

It is well known that silver-based compounds, such as AgX, Ag₃PO₄, Ag₂CO₃ and Ag₂MoO₄, are easily decomposed to generate metal Ag after light irradiation. For example, Ag@AgX [19-24] have been used as highly efficient plasmonic photocatalysts that have Ag nanoparticles (NPs) deposited directly onto the surface of AgX particles via UV or visible light irradiation. Noble Ag NPs, as well as other noble metal NPs (Au, Pt and Pd), can dramatically amplify the absorption of visible light (surface plasmon resonance (SPR) effect [24-26]) and efficiently trap photoinduced electrons [27,28]. However, no attention has been paid to the Ag NPs formed in the AgX/Ag₃PO₄ system. What a special role does it play in the AgX/Ag₃PO₄ system? Furthermore, it is very important to illustrate the mechanism of activity enhancement for AgX/Ag₃PO₄ system clearly, including the generation and separation of the photoinduced carriers, roles of Ag NPs, and the main reactive oxygen species involved in photocatalytic reaction.

inevitably become a main obstacle for $\mbox{Ag}_{3}\mbox{PO}_{4}$ in practical application.

^{*} Corresponding author. Tel.: +86 561 3806611; fax: +86 561 3803141. E-mail addresses: caojing@mail.ipc.ac.cn (J. Cao), chshifu@chnu.edu.cn (S. Chen).

Herein, we report a newly constructed AgBr/Ag₃PO₄ hybrid with different AgBr contents by *in situ* anion-exchange method. AgBr/Ag₃PO₄ can easily transform to be Ag@AgBr/Ag₃PO₄@Ag system in the early stage of the photocatalytic reaction. This novel composite system (AgBr/Ag₃PO₄, Ag@AgBr and Ag@Ag₃PO₄) is highly expected to exhibit excellent photocatalytic activity. Methyl orange (MO) and phenol were used as model pollutants to evaluate the photocatalytic activity of the AgBr/Ag₃PO₄ hybrid under visible light (λ > 420 nm). Based on the results of the repetition tests, the different roles of Ag NPs on the activity and stability of the photocatalyst was investigated. Additionally, various scavengers were introduced to the photocatalytic reaction system to explore the effects of different reactive oxygen species in the MO degradation process.

2. Experimental

2.1. Chemicals and materials

All reagents were of analytical purity and were used without further purification. Silver nitrate (AgNO $_3$), sodium bromide (NaBr), sodium dihydrogen phosphate dihydrate (NaH $_2$ PO $_4$ ·2H $_2$ O), methyl orange, phenol, terephthalic acid (TA), benzoquinone (BQ), ammonium oxalate (AO), tert-butyl alcohol (TBA), catalase (CAT), and sodium hydroxide (NaOH) were obtained from Sinopharm Chemical Reagent Co., Ltd. Deionized water was used throughout this study.

2.2. Preparation of AgBr/Ag₃PO₄ photocatalyst

The synthesis of Ag_3PO_4 precursor was achieved by a simple precipitation reaction in a dark condition at room temperature. In a typical procedure, $5.59\,\mathrm{g}$ of $NaH_2PO_4\cdot 2H_2O$ and $18.27\,\mathrm{g}$ of $AgNO_3$ were dissolved in deionized water in advance, respectively, then dilute NaOH solution (0.1 M) was dropped into NaH_2PO_4 solution to adjust the pH value of the solution to 8.50 with stirring. Subsequently, while $AgNO_3$ solution was added dropwise into above solution, the pH of the suspension was kept at 8.00 using NaOH solution (0.1 M). After vigorously stirring for $5\,\mathrm{h}$, the yellow precipitate was collected, rinsed with deionized water for $3\,\mathrm{times}$, and dried at $60\,\mathrm{^{\circ}C}$ for $24\,\mathrm{h}$ to obtain Ag_3PO_4 .

AgBr/Ag₃PO₄ was prepared through an *in situ* anion-exchange method in a dark condition at room temperature. Initially, 1.0 g of Ag₃PO₄ was dispersed in 50 mL of deionized water and then the suspension was sonicated for 30 min. Subsequently, different stoichiometric amounts of NaBr solution were added slowly into above suspension with constant stirring. After addition, the mixtures were vigorously stirring for 3 h. The theoretical molar percentages of added Br/original P were controlled to be 20%, 40%, 60% and 80%, respectively. Finally, the precipitates were collected, washed with deionized water for 3 times, and dried at 60 °C for 24 h. The final samples were denoted as 20% AgBr/Ag₃PO₄, 40% AgBr/Ag₃PO₄, 60% AgBr/Ag₃PO₄ and 80% AgBr/Ag₃PO₄, respectively.

For comparison, pure AgBr sample was also prepared by a simple precipitation method according to our previous study [29].

2.3. Characterization of AgBr/Ag₃PO₄ photocatalyst

XRD analysis of the as-prepared samples was carried out at room temperature with a Bruker D8 Advance X-diffractometer using Cu $K\alpha$ radiation (λ = 1.5406 Å), operated at 40 kV and 40 mA, and a scanning speed of $10^\circ/\text{min}$. XPS measurements were performed on a Thermo ESCALAB 250 with Al $K\alpha$ (1486.6 eV) line at 150 W. To compensate for surface charges effects, binding energies were calibrated using the C1s peak at 284.80 eV as the reference. FE-SEM measurements were recorded on a FEI Sirion200 with

an accelerating voltage of 5.00 kV. Energy-dispersive spectroscopy (EDS) was observed by using an Oxford instruments INCA X-act detector. The DRS were obtained by a Pgeneral TU-1901 UV-VIS spectrophotometer equipped with an integrating sphere assembly. The analysis range was from 300 to 800 nm, and BaSO₄ was used as a reflectance standard. Fluorescence emission spectra were recorded on a JASCO FP-6500 type fluorescence spectrophotometer with 260 nm excitation source over a wavelength range of 400–650 nm. Shimadzu TOC-V_{CPH} total organic carbon analyzer was used to detect the total organic carbon (TOC) of MO and phenol solution.

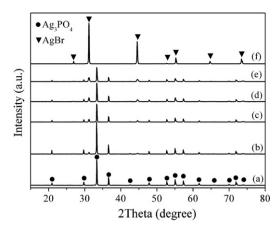
2.4. Photocatalytic activities test

The photodegradation of MO was adopted to evaluate the photocatalytic activity of AgBr/Ag₃PO₄ in a photoreaction apparatus [29]. A 500W Xe lamp (Institute of Electric Light Source, Beijing) was used as the light source with a 420 nm cutoff filter (Instrument Company of Nantong, China) to provide visible-light irradiation. In each experiment, 0.10 g photocatalyst was added into $50 \,\mathrm{mL}$ of MO solution ($10 \,\mathrm{mg} \,\mathrm{L}^{-1}$). Prior to illumination, the suspension was magnetically stirred in the dark for 30 min to reach adsorption-desorption equilibrium of MO on catalyst surfaces. At irradiation time intervals of 10 min, 5 mL of the suspension was collected, then centrifuged (4000 rpm, 30 min) and filtered through 0.22 µm millipore filter to remove the photocatalyst particles. The catalyst-free dye solution was analyzed with a 722s spectrophotometer (Shanghai Youke Instrument Co., Ltd., China). The concentration of MO was determined from its maximum absorption at a wavelength of 464 nm with deionized water as a reference sample.

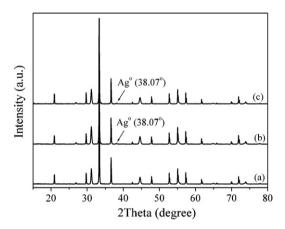
In addition, the degradation of phenol aqueous solution over 60% AgBr/Ag₃PO₄ under visible light (λ > 420 nm) was also carried out (see Supplementary Data).

The TOC values of degradation of MO and phenol solution over $60\%\,AgBr/Ag_3PO_4$ were detected, respectively, by a Shimadzu TOC-V_{CPH} total organic carbon analyzer to determine the extent of mineralization.

2.5. Detection of reactive oxygen species

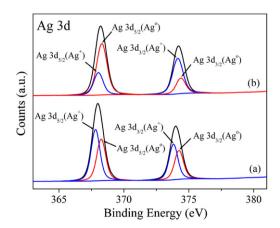

The examination experiment process of reactive oxygen species is similar to the photodegradation experiment. Different quantity of scavengers was introduced into the MO solution prior to addition of the catalyst. The dosages of these scavengers were referred to the previous studies [30–32].

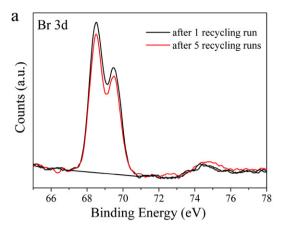
In addition, photoluminescence (PL) technique with terephthalic acid as a probe molecule was used to investigate the formation of *OH radicals [33,34] on the surface of AgBr/Ag₃PO₄ illuminated by visible light irradiation. The experimental procedures were carried out according to our previous studies [35].

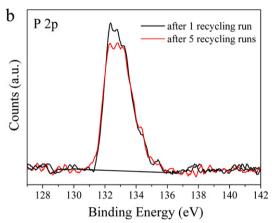

3. Results and discussion

3.1. XRD and XPS analysis

Fig. 1 shows the XRD patterns of the as-prepared samples. It is observed that Ag₃PO₄ (Fig. 1a) was cubic phase (JCPDS NO. 06-0505) while AgBr (Fig. 1f) was face-centered cubic AgBr structure (JCPDS NO. 06-0438). In addition, the AgBr/Ag₃PO₄ hybrid (Fig. 1b-e) exhibited a coexistence of both AgBr and Ag₃PO₄ phases. With increasing AgBr content, the intensities of diffraction peaks of AgBr increased whereas those of Ag₃PO₄ decreased simultaneously. Furthermore, all the used AgBr/Ag₃PO₄ hybrids became a little darker than the corresponding fresh AgBr/Ag₃PO₄ hybrids. For instance, the diffraction peaks at 38.07° (JCPDS NO. 04-0783) assigned to Ag were displayed in the used 60% AgBr/Ag₃PO₄ after 1


Fig. 1. XRD patterns of (a) Ag₃PO₄, (b) 20% AgBr/Ag₃PO₄, (c) 40% AgBr/Ag₃PO₄, (d) 60% AgBr/Ag₃PO₄, (e) 80% AgBr/Ag₃PO₄ and (f) AgBr.


Fig. 2. XRD patterns of (a) the fresh 60% AgBr/Ag₃PO₄, (b) the used 60% AgBr/Ag₃PO₄ after 1 recycling run and (d) the used 60% AgBr/Ag₃PO₄ after 5 recycling runs.


(Fig. 2b) and 5 (Fig. 2c) recycling runs compared with the fresh 60% AgBr/Ag₃PO₄ (Fig. 2a), whereas the crystal structures of both AgBr and Ag₃PO₄ were still well maintained.

In addition, the appearance of metal Ag in the used AgBr/Ag $_3$ PO $_4$ hybrids can be further confirmed by the XPS. The surface element composition and chemical state for the used 60% AgBr/Ag $_3$ PO $_4$ were analyzed by XPS and the results are shown in Figs. 3 and 4. The binding energies of the XPS spectra were calibrated by C1s (284.8 eV). The Ag 3d spectra of the used 60% AgBr/Ag $_3$ PO $_4$ after 1 (Fig. 3a) and

Fig. 3. Ag 3d XPS spectra of (a) the used 60% AgBr/Ag₃PO₄ after 1 recycling run and (b) the used 60% AgBr/Ag₃PO₄ after 5 recycling runs.

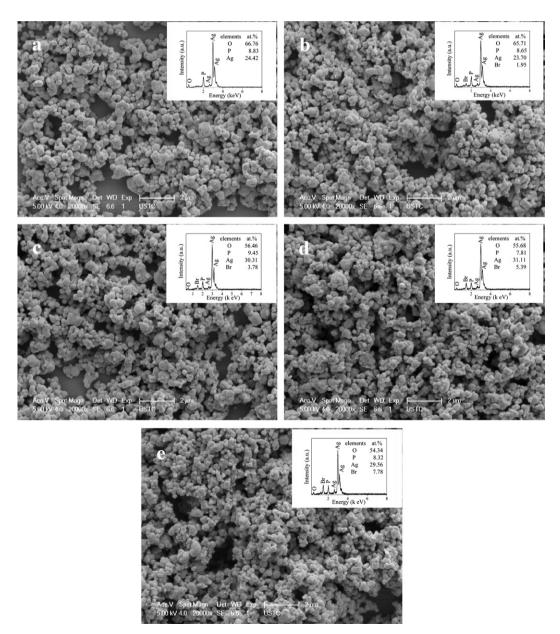
Fig. 4. (a) Br 3d and (b) P 2p XPS spectra of the used 60% AgBr/Ag₃PO₄ (black line: after 1 recycling run; red line: after 5 recycling runs). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

5 (Fig. 3b) recycling runs are shown in Fig. 3. The Ag 3d peaks of the used AgBr/Ag₃PO₄ hybrids were consisted of two individual peaks, corresponding to Ag and Ag⁺, respectively. According to Zhang et al. [36], the peaks at 368.25 and 374.24 eV can be attributed to Ag. whereas the peaks at 367.81 and 373.81 eV can be attributed to the Ag⁺ of AgBr and Ag₃PO₄. It clearly shows that the intensity of Ag⁺ decreased while that of Ag increased during the photocatalytic process, which indicates that partial Ag+ gradually transformed to be metal Ag under the sustaining irradiation. The decrease in intensity of Br 3d (Fig. 4a) and P 2p (Fig. 4b) XPS spectra of the used 60% AgBr/Ag₃PO₄ from 1 to 5 recycling runs also proved that the amount of Ag has become larger. The detailed contents of all the elements in AgBr/Ag₃PO₄ hybrids are displayed in Table 1. These results suggest that AgBr/Ag₃PO₄ has transformed to be Ag@AgBr/Ag₃PO₄@Ag composite photocatalyst after light irradiation during the photocatalytic process without additional light reduction treatment before the photocatalysis.

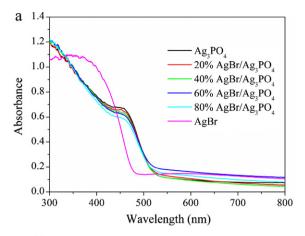
3.2. FE-SEM and EDS analysis

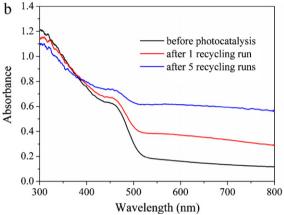
The FE-SEM images of Ag_3PO_4 and $AgBr/Ag_3PO_4$ hybrids are presented in Fig. 5, and the corresponding EDS results are shown as insets. Fig. 5a displays that Ag_3PO_4 particles had irregular shapes with size of about $0.2-0.8~\mu m$. The particle size and morphology of the $AgBr/Ag_3PO_4$ hybrids (Fig. 5b-e) were approximately similar to that of Ag_3PO_4 , except for some smaller AgBr particles formed. Because it is not clear to distinguish between $AgBr/Ag_3PO_4$ hybrids and Ag_3PO_4 , the EDS of them were necessary. It presents that pure Ag_3PO_4 were composed of Ag, P and O elements, whereas

Table 1XPS results of the used 60% AgBr/Ag₃PO₄.


Catalyst	XPS results (at.%)					
	Ag ⁺	Ag	Br	P	0	С
60% AgBr/Ag ₃ PO ₄ after 1 recycling run 60% AgBr/Ag ₃ PO ₄ after 5 recycling runs	13.18 5.96	10.93 15.00	4.58 4.03	5.13 5.02	35.03 39.09	31.15 30.90

 ${\rm AgBr/Ag_3PO_4}$ were consisted of Ag, P, Br and O elements, which further proves that AgBr existed in all the AgBr/Ag_3PO_4 hybrids. In addition, no other impurity was appeared in the system. The change tendency of AgBr contents obtained from EDS results were agreed with the XRD data. Therefore, the as-prepared samples had similar morphologies but had different components from each other.

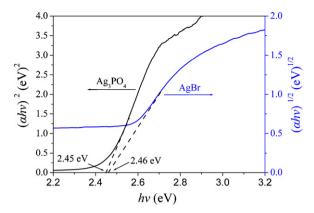

3.3. DRS analysis


Fig. 6a shows the DRS of the AgBr, Ag₃PO₄ and AgBr/Ag₃PO₄ hybrids. As can be seen, AgBr had an absorption edge at about

 $480\,\text{nm}$, while Ag_3PO_4 had broader absorption in the visible region with an absorption edge of around $530\,\text{nm}$ [13]. The $AgBr/Ag_3PO_4$ exhibited a mixed absorption property of AgBr and Ag_3PO_4 . In the wavelength range from 400 to $500\,\text{nm}$, with increasing AgBr content, the absorption edge of $AgBr/Ag_3PO_4$ had a weak blue shift compared to single Ag_3PO_4 . Differently, the used $60\%\,AgBr/Ag_3PO_4$ after 1 and 5 recycling runs had much stronger absorption in the visible region than that of the fresh $60\%\,AgBr/Ag_3PO_4$, as shown in Fig. 6b, which may result from the strong SPR effect of $Ag\,NPs$ deposited on the $AgBr\,$ and Ag_3PO_4 particles [19–24,37]. Furthermore, the absorption in the visible region was enhanced from 1 to

 $\textbf{Fig. 5.} \ \ \text{FE-SEM images of (a)} \ Ag_3PO_4, (b) \ 20\% \ AgBr/Ag_3PO_4, (c) \ 40\% \ AgBr/Ag_3PO_4, (d) \ 60\% \ AgBr/Ag_3PO_4 \ and (e) \ 80\% \ AgBr/Ag_3PO_4 \ (insets \ show \ the \ corresponding \ EDS).$

Fig. 6. (a) DRS of AgBr, Ag $_3$ PO $_4$ and AgBr/Ag $_3$ PO $_4$ hybrids. (b) DRS of the fresh 60% AgBr/Ag $_3$ PO $_4$ (black line), the used 60% AgBr/Ag $_3$ PO $_4$ after 1 recycling run (red line) and the used 60% AgBr/Ag $_3$ PO $_4$ after 5 recycling runs (blue line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)


5 recycling runs, indicating that the amount of metal Ag increased in the photocatalytic reaction, which is consistent with the XPS data (Fig. 3). The increased content of metal Ag will affect the size of Ag, which further affects the separation of photoinduced carriers [38], the SPR effect of Ag NPs [20,39] and then corresponding photocatalytic activities. Further discussion will be carried out to discuss the stability of AgBr/Ag $_3$ PO $_4$ hybrids.

In order to further confirm the position of metal Ag, the XRD and DRS experiments of single Ag_3PO_4 and AgBr before and after photocatalysis were adapted, respectively, as shown in Fig. S1–S2. The results show that metal Ag can be formed on the surface of Ag_3PO_4 [37] as well as AgBr [23,24], which means that AgBr/Ag₃PO₄ hybrid has converted to Ag@AgBr/Ag₃PO₄@Ag system during the photocatalytic reaction process.

The band gap energy of a semiconductor can be calculated by the following formula [40]:

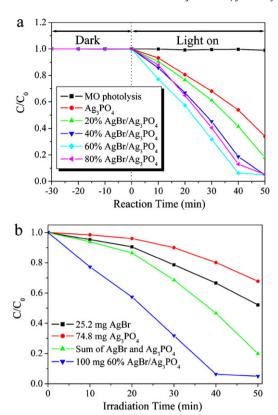
$$\alpha h \nu = A(h\nu - E_{\rm g})^{n/2} \tag{1}$$

where α , h, ν , $E_{\rm g}$ and A are absorption coefficient, Planck constant, light frequency, band gap energy, and a constant, respectively. Among them, n is determined from the type of optical transition of a semiconductor (n=1 for direct transition and n=4 for indirect transition). For AgBr and Ag₃PO₄, the values of n are 4 [41] and 1 [13], respectively. Therefore, $E_{\rm g}$ of AgBr was determined from a plot of $(\alpha h \nu)^{1/2}$ versus energy ($h \nu$) (Fig. 7) and was elicited to be 2.46 eV. Accordingly, $E_{\rm g}$ of Ag₃PO₄ was found to be 2.45 eV according to a plot of $(\alpha h \nu)^2$ versus energy ($h \nu$) (Fig. 7).

Fig. 7. Plot of $(\alpha h \nu)^{1/2}$ *versus* energy $(h \nu)$ for the band gap energy of AgBr and the plot of $(\alpha h \nu)^2$ *versus* energy $(h \nu)$ for the band gap energy of Ag₃PO₄.

In addition, the valence band (VB) edge positions of AgBr and Ag₃PO₄ components were estimated according to the concept of electronegativity. Herein, the electronegativity of an atom is the arithmetic mean of the atomic electron affinity and the first ionization energy. The VB edge potential of a semiconductor at the point of zero charge can be calculated by the following empirical equation [42]:

$$E_{VB} = X - E^{c} + 0.5E_{g} \tag{2}$$

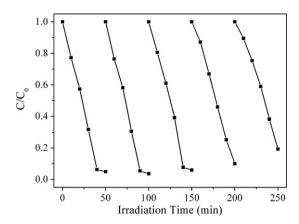

where $E_{\rm VB}$ is the VB edge potential, X is the electronegativity of the semiconductor, which is the geometric mean of the electronegativity of the constituent atoms, $E^{\rm c}$ is the energy of free electrons on the hydrogen scale (about 4.5 eV), $E_{\rm g}$ is the band gap energy of the semiconductor. Moreover, conduction band (CB) edge potential ($E_{\rm CB}$) can be determined by $E_{\rm CB} = E_{\rm VB} - E_{\rm g}$. The X values for AgBr and Ag₃PO₄ are 5.81 and 5.96 eV, and the $E_{\rm VB}$ of AgBr and Ag₃PO₄ were calculated to be 2.54 and 2.69 eV/NHE, respectively. Thus, the $E_{\rm CB}$ of AgBr and Ag₃PO₄ were estimated to be 0.08 and 0.24 eV/NHE, respectively.

3.4. Degradation of MO using AgBr/Ag₃PO₄ photocatalyst

The photocatalytic activities of as-prepared samples were evaluated by the degradation of MO under visible light (λ > 420 nm). Fig. 8a displays the photodegradation of MO as a function of irradiation time over different photocatalysts. From the blank (in the absence of any catalyst) and the dark (without irradiation) experiments, the self-photolysis of MO upon visible light irradiation and the dark adsorption of MO over each sample can be neglected, as shown in Fig. 8a. All the AgBr/Ag₃PO₄ hybrids exhibited higher photocatalytic activities than pure Ag₃PO₄. As the AgBr content increased to 60%, the highest photocatalytic activity was achieved, at which 95.1% of MO was decomposed after 50 min irradiation. However, the photocatalytic activity decreased when the AgBr content rose to 80%. These results suggest that the optimal AgBr content in AgBr/Ag₃PO₄ existed when the Br/P molar ratio was 0.60.

Moreover, Fig. 8b clearly shows that the photocatalytic activity of 60% AgBr/Ag $_3$ PO $_4$ (100 mg) is much higher than that of mathematical sum of AgBr (25.2 mg) and Ag $_3$ PO $_4$ (74.8 mg), in which they contain the same weight of visible-light-active components as in 60% AgBr/Ag $_3$ PO $_4$. It is resulted from the decrease in recombination rate of electron–hole pairs, which can be attributed to the heterojunction between AgBr and Ag $_3$ PO $_4$ formed in AgBr/Ag $_3$ PO $_4$ hybrid.

Since MO can absorb visible light, the sensitization possibility for AgBr/Ag₃PO₄ hybrid should be considered. In order to ensure the photocatalytic activity of AgBr/Ag₃PO₄ hybrid and exclude the dye sensitization under visible light, degradation of a


Fig. 8. (a) Photocatalytic activities of Ag_3PO_4 and $AgBr/Ag_3PO_4$ hybrids on the degradation of MO under visible light ($\lambda > 420\,\mathrm{nm}$). (b) Comparison of photocatalytic activities of different photocatalysts with the same weight of each visible-light-active component: 25.2 mg AgBr (black line), 74.8 mg Ag_3PO_4 (red line), mathematical sum of 25.2 mg AgBr and 74.8 mg Ag_3PO_4 (green line), and 100.00 mg 60% $AgBr/Ag_3PO_4$ containing 25.2 mg AgBr and 74.8 mg Ag_3PO_4 (blue line) on the degradation of MO under visible light. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

typical colorless organic contaminant is a better choice. Therefore, phenol was chosen as another moderate contaminant to further estimate the photocatalytic performance in our study, and the results are shown in Fig. S3. It displays that the peak intensity of phenol at 270 nm decreased obviously with increasing irradiation time, indicating that phenol can be effectively degraded over 60% AgBr/Ag₃PO₄ under visible light. Because colorless phenol cannot sensitize AgBr/Ag₃PO₄, this can be used as a forceful proof to ensure the photocatalytic activity of AgBr/Ag₃PO₄.

The TOC experiments of MO and phenol solution in the presence of 60% AgBr/Ag₃PO₄ were also performed, respectively. For MO solution, the TOC of MO solution decreased by *ca.* 51.8% after irradiation for 50 min, suggesting that MO had not only been decolorized but also mineralized over AgBr/Ag₃PO₄ hybrid under visible irradiation. However, the rate of TOC reduction is slower than that of the degradation of MO which is nearly 100% discoloration for MO in 40 min, as shown in Fig. 8a, suggesting that MO may be first partial degradation to colorless products and then converted into CO₂ in the photocatalytic reaction process [43,44]. For phenol solution, as depicted in Fig. S4, the TOC values of phenol solution decreased gradually with increasing irradiation time and the phenol mineralization degree reached a value of 82.5% after 100 min of irradiation.

3.5. Stability of AgBr/Ag₃PO₄ photocatalyst

To evaluate the stability of AgBr/Ag₃PO₄ hybrid, we conducted the repeatability experiments of MO degradation over 60% AgBr/Ag₃PO₄ and the result is shown in Fig. 9. After 4 recycling runs

Fig. 9. Cycling runs of 60% AgBr/Ag₃PO₄ for the degradation of MO under visible light irradiation.

for the photodegradation of MO, the high photocatalytic performance of AgBr/Ag₃PO₄ was effectively maintained except for 5.1% decrease in photocatalytic efficiency, suggesting that AgBr/Ag₃PO₄ has high stability under visible light. This result indicates that though AgBr/Ag₃PO₄ is not stable in the initial reaction process under visible light, the formed Ag@AgBr/Ag₃PO₄@Ag plasmonic system can effectively retain its activity due to the efficient transfer of photoinduced electrons. Special mention must be made, the photocatalytic activity decreased obviously, down to 80.7% of MO degradation after 5 recycling runs. In order to understand this phenomenon, the roles of Ag NPs controlled by their sizes should be addressed.

3.6. Possible photocatalytic mechanism

3.6.1. Fluorescence emission spectra

In a photocatalytic reaction, the activity is largely affected by the recombination of the photoinduced electrons and holes, which will decrease the quantum yield [45]. It is known that the recombination of electron–hole pairs can release energy in the form of fluorescence emission. Lower fluorescence emission intensity implies lower electron–hole recombination rate and corresponds to higher photocatalytic activity [46].

Using an ultraviolet light with a 260 nm wavelength as excitation source, the fluorescence emission spectra of AgBr, Ag $_3$ PO $_4$ and AgBr/Ag $_3$ PO $_4$ hybrids are presented in Fig. 10. It can be seen that both AgBr and Ag $_3$ PO $_4$ show higher intensity of emission spectra than those of all the AgBr/Ag $_3$ PO $_4$ hybrids. In case of pure AgBr and Ag $_3$ PO $_4$, the photoinduced electrons and holes might recombine

Fig. 10. Fluorescence emission spectra of AgBr, Ag₃PO₄ and AgBr/Ag₃PO₄ hybrids.

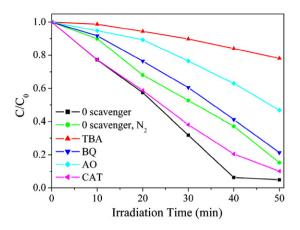


Fig. 11. Effects of different scavengers on degradation of MO in the presence of 60% AgBr/Ag₃PO₄ and under N₂-saturated condition.

rapidly because of their narrow band gaps. However, in the case of AgBr/Ag₃PO₄ hybrids, the photoinduced carriers can migrate easily between AgBr and Ag₃PO₄ due to their matching band potentials and therefore the electron–hole recombination rate is greatly decreased. This result shows that AgBr/Ag₃PO₄ heterojunction is helpful to inhibit the recombination of photoinduced carriers and improve the corresponding photocatalytic activity.

In addition, the emission intensity of $AgBr/Ag_3PO_4$ decreased from 20% to 60% $AgBr/Ag_3PO_4$, and then increased up to 80% $AgBr/Ag_3PO_4$, in which 60% $AgBr/Ag_3PO_4$ displayed the lowest intensity of emission spectra. It indicates that 60% $AgBr/Ag_3PO_4$ has the lowest electron–hole recombination rate, suggesting that the electrons and holes have longer lifetime and may form more amount of reactive species. This coincides with the highest photocatalytic activity of 60% $AgBr/Ag_3PO_4$. $AgBr/Ag_3PO_4$ photocatalysts with other AgBr contents had correspondingly lower photocatalytic activity than 60% $AgBr/Ag_3PO_4$.

3.6.2. Roles of reactive oxygen species

It is generally accepted that the dyes and organic pollutants can be photodegraded via photocatalytic oxidation (PCO) process. A large number of main reactive oxygen species (ROSs) including h^+ , H_2O_2 , •OH and • O_2^- involved in PCO process [32,47,48]. Therefore, the effects of some scavengers and N_2 purging without adding any scavengers on the degradation of MO were examined in attempt to elucidate the reaction mechanism. In this study, TBA was added to the reaction system as an •OH scavenger [32,49], and AO was introduced as a scavenger of h^+ [31,50,51]. BQ was adopted to quench • O_2^- [52,53], and CAT was used as a H_2O_2 scavenger [30].

Fig. 11 shows that in the presence of TBA or AO, the photodegradation of MO was inhibited significantly compared with no scavenger at the same conditions, indicating the main roles of *OH and h $^+$ for MO degradation. The addition of BQ and CAT showed weaker effects in PCO process of MO, suggesting that *O $_2$ $^-$ and H $_2$ O $_2$ played comparatively minor role for MO degradation.

In order to further confirm the existence of *OH, the formed *OH on the surface of AgBr/Ag₃PO₄ hybrids illuminated by visible light were detected by PL technique. The experimental conditions were the same as the photocatalytic reaction system. The PL emission spectra excited at 315 nm from TA solution suspension with different AgBr/Ag₃PO₄ hybrids and Ag₃PO₄ were measured after each sample was illuminated for 20 min of visible light. Fig. 12 displays that a PL signal was observed at 425 nm for each AgBr/Ag₃PO₄ hybrid. The PL intensity was enhanced to maximum (60% AgBr/Ag₃PO₄) and then declined with increasing AgBr content. This suggests that the fluorescence is caused by chemical reactions of TA with *OH formed in photocatalytic reactions [33,34]. Hence,

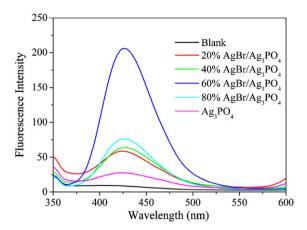


Fig. 12. PL spectra of Ag_3PO_4 and $AgBr/Ag_3PO_4$ hybrids in TA solution (each sample was illuminated for 20 min of visible light).

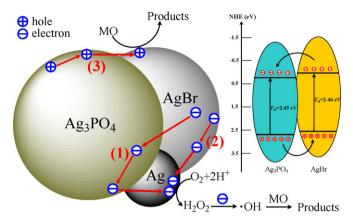
*OH is the reactive oxygen species in AgBr/Ag₃PO₄ system and finally induces the degradation of MO. Moreover, 60% AgBr/Ag₃PO₄ with maximal photocatalytic activity produced much more reactive *OH than other samples, which is also consonant with the results of fluorescence emission spectra (Fig. 10).

Furthermore, all the AgBr/Ag₃PO₄ hybrids show higher PL intensity than pure Ag₃PO₄, suggesting that *in situ* loading AgBr on the surface of Ag₃PO₄ particles is a good way to accelerate the transfer and separation of the photoinduced carriers, which leads to the increase of *OH formation.

Because of the lower E_{CB} values of Ag_3PO_4 and AgBr, both Ag_3PO_4 and AgBr can not provide a sufficient potential to reduce O_2 to ${}^{\bullet}O_2{}^{-}$ ($E^{\circ}(O_2){}^{\bullet}O_2{}^{-} = -0.33 \text{ V/NHE}$) [49,54] through the one-electron reduction process and further generate ${}^{\bullet}OH$. Therefore, it is reasonable for O_2 to combine with electrons trapped by noble Ag NPs and form H_2O_2 (Eq. (3)) via a two-electron reduction reaction process [18,49,55–57] ($E^{\circ}(O_2/H_2O_2) = +0.695 \text{ V/NHE}$) [49]. Then the formed H_2O_2 quickly reacts with an electron to finally generate ${}^{\bullet}OH$ (Eq. (4)).

$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$$
 (3)

$$H_2O_2 + e^- \rightarrow {}^{\bullet}OH + OH^- \tag{4}$$


On the other hand, experiments with purging N_2 were carried out to examine the role of dissolved O_2 . As can be seen from Fig. 11, when N_2 purging (0 scavenger) was conducted, the degradation of MO was decreased compared with air-equilibrated conditions (0 scavenger), confirming that the dissolved O_2 can primarily act as an efficient electrons trap, leading to the generation of ${}^{\bullet}OH$, and simultaneously preventing the recombination of electrons and holes [32,48].

In addition, reactive holes at the VB top of AgBr will oxidize MO directly due to its insufficient potential to oxidize surface adsorbed H_2O to ${}^{\bullet}OH$ ($E^{\circ}({}^{\bullet}OH, H^{+}/H_2O) = 2.72 \text{ V/NHE})$ [30].

3.6.3. Possible degradation mechanism and the role of Ag nanoparticles

On the base of band gap structure of AgBr/Ag₃PO₄ and the effects of scavengers, a possible pathway for the photodegradation of MO with AgBr/Ag₃PO₄ photocatalyst was proposed as follows (Fig. 13):

During the PCO process, the AgBr/Ag₃PO₄ system was transformed to be Ag@AgBr/Ag₃PO₄@Ag system. Ag₃PO₄ and AgBr can be simultaneously excited to form electron–hole pairs under visible light irradiation. On the one hand, the photoinduced electrons transfer from the CB bottom of AgBr to that of Ag₃PO₄ and then are trapped by Ag NPs through path (1) in Fig. 13. On the other hand, the photoinduced electrons on the CB bottom of AgBr can also be

Fig. 13. Schematic diagram of electron–hole pairs separation and the possible reaction mechanism over Ag@AgBr/Ag₃PO₄@Ag photocatalyst under visible light irradiation. (Only the Ag NPs contact with both Ag₃PO₄ and AgBr particles is displayed here.)

trapped by Ag NPs directly through path (2) in Fig. 13. At the same time, the photogenerated holes also move in the opposite direction from the VB top of Ag_3PO_4 to that of AgBr through path (3) in Fig. 13. These photoinduced electrons trapped by Ag NPs will further react with the O_2 via two-electron reduction process (Eq. (3)) to finally generate reactive *OH (Eq. (4)) that will induce the degradation of MO. Meanwhile, reactive holes at the VB of AgBr will oxidize MO directly. Through this way, the photogenerated carriers can be separated efficiently and improved the photocatalytic activities of AgBr/Ag₃PO₄.

In addition, as mentioned above, the decrease in the photocatalytic activity has been observed during the cycle experiments, as shown in Fig. 9, which may be mainly controlled by the Ag NPs that can display different roles in the photocatalytic reaction due to the changes in the size of Ag_n clusters [38].

- (1) For small n, the photoinduced electron can be effectively trapped by the small Ag NPs [27,58–60] deposited on the surface of AgBr and Ag₃PO₄ with the effect of decreasing recombination of photoinduced carriers, which increases product yields of h⁺ and •OH, and further improves the photocatalytic activity of AgBr/Ag₃PO₄.
- (2) For large n, though the Ag_n cluster still can be used as an electron trap, it is unlikely to transfer electrons to O₂. Besides, the capability of accepting photoinduced holes is enhanced gradually, and thus the Ag_n clusters turn into the combination centers of photoinduced carriers [38,61], which will counteract the activity improvement. Therefore, the changes in the size of Ag_n clusters in the PCO process displayed different roles for the photoinduced carriers, which finally controlled the photocatalytic activity of AgBr/Ag₃PO₄.

In conclusion, the photoinduced electrons and holes can be effectively separated through the *in situ* formed heterojunction of AgBr/Ag₃PO₄ and the trapping role of Ag NPs with limited sizes in the PCO process. Moreover, the SPR effect of Ag NPs ensures enough visible light to be utilized. These are the two main reasons for realizing the activity enhancement of AgBr/Ag₃PO₄ under visible light. This may provide another approach to deeply understand the role of Ag NPs for AgX-based system.

4. Conclusions

The AgBr/Ag₃PO₄ hybrid was synthesized using an *in situ* anion-exchange method. The as-prepared AgBr/Ag₃PO₄ exhibited excellent performance on the degradation of MO and displayed

much higher photocatalytic activity than single AgBr or Ag_3PO_4 under visible light (λ > 420 nm). After 5 cycles of repetition tests, the degradation efficiency of MO still remained 80.7%. Photocatalytic mechanism investigations demonstrate that the degradation of MO over the as-prepared $AgBr/Ag_3PO_4$ under visible light is mainly via ${}^{\bullet}OH$ and h^{+} oxidation mechanism. The activity changes of $AgBr/Ag_3PO_4$ depend on not only the heterojunction between AgBr and Ag_3PO_4 , but also the Ag NPs controlled by the sizes during the photocatalytic process. It may be a promising efficient composite photocatalyst for environmental purification.

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 20973071, 51172086), the Natural Science Foundation of Educational Committee of Anhui Province (No. 2012Z356) and the youth foundation of Huaibei Normal University (No. 2011xqxm31).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jhazmat.2012.03.002.

References

- [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.
- [2] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341–357.
- [3] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
- [4] X. Xiao, W.D. Zhang, Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity, J. Mater. Chem. 20 (2010) 5866–5870.
- [5] Y.Q. Lei, G.H. Wang, S.Y. Song, W.Q. Fan, M. Pang, J.K. Tang, H.J. Zhang, Room temperature, template-free synthesis of BiOI hierarchical structures: visiblelight photocatalytic and electrochemical hydrogen storage properties, Dalton Trans. 39 (2010) 3273–3278.
- [6] J. Zhang, F.J. Shi, J. Lin, D.F. Chen, J.M. Gao, Z.X. Huang, X.X. Ding, C.C. Tang, Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst, Chem. Mater. 20 (2008) 2937–2941.
- [7] M. Shang, W.Z. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template, J. Hazard. Mater. 167 (2009) 803–809.
- [8] L.S. Zhang, H.L. Wang, Z.G. Chen, P.K. Wong, J.S. Liu, Bi₂WO₆ micro/nanostructures: synthesis, modifications and visible-light-driven photocatalytic applications, Appl. Catal. B: Environ. 106 (2011) 1–13.
- [9] T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.P. Jolivet, Bi₂O₃, BiVO₄, and Bi₂WO₆: impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C 115 (2011) 5657–5666
- [10] J.Q. Yu, Y. Zhang, A. Kudo, Synthesis and photocatalytic performances of BiVO₄ by ammonia co-precipitation process, J. Solid State Chem. 182 (2009) 223–228.
- [11] W. Liu, M.S. Ji, S.F. Chen, Preparation, characterization and activity evaluation of $Ag_2Mo_4O_{13}$ photocatalyst, J. Hazard. Mater. 186 (2011) 2001–2008.
- [12] K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature 440 (2006) 295.
- [13] Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S. Ouyang, H.S. Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater. 9 (2010) 559–564.
- [14] C.W. Xu, Y.Y. Liu, B.B. Huang, H. Li, X.Y. Qin, X.Y. Zhang, Y. Dai, Preparation, characterization, and photocatalytic properties of silver carbonate, Appl. Surf. Sci. 257 (2011) 8732–8736.
- [15] X.G. Ma, B. Lu, D. Li, R. Shi, C.S. Pan, Y.F Zhu, Origin of photocatalytic activation of silver orthophosphate from first-principles, J. Phys. Chem. C 115 (2011) 4680–4687.
- [16] C.T. Dinh, T.D. Nguyen, F. Kleitz, T.O. Do, Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity, Chem. Commun. 47 (2011) 7797–7799.
- [17] Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, Facet effect of single-crystalline Ag₃PO₄ sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc. 133 (2011) 6490–6492.
- [18] Y.P. Bi, S.X. Ouyang, J.Y. Cao, J.H. Ye, Facile synthesis of rhombic dodecahedral AgX/Ag₃PO₄ (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities, Phys. Chem. Chem. Phys. 13 (2011) 10071–10075.

- [19] P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed. 47 (2008) 7931–7933.
- [20] H. Xu, H.M. Li, J.X. Xia, S. Yin, Z.J. Luo, L. Liu, L. Xu, One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid, ACS Appl. Mater. Interfaces 3 (2011) 22–29.
- [21] C.H. An, S. Peng, Y.G. Sun, Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst, Adv. Mater. 22 (2010) 2570–2574.
- [22] L. Han, P. Wang, C.Z. Zhu, Y.M. Zhai, S.J. Dong, Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst, Nanoscale 3 (2011) 2931–2935.
- [23] L. Kuai, B.Y. Geng, X.T. Chen, Y.Y. Zhao, Y.C. Luo, Facil subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst, Langmuir 26 (2010) 18723–18727.
- [24] P. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, H. Jin, Y. Dai, Z.Y. Wang, J.Y. Wei, J. Zhan, S.Y. Wang, J.P. Wang, M.H. Wangbo, Highly efficient visible-light plasmonic photocatalyst Ag@AgBr, Chem. Eur. J. 15 (2009) 1821–1824.
- [25] X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (2006) 2115–2120.
- [26] C. Langhammer, Z. Yuan, I. Zoric, B. Kasemo, Plasmonic properties of supported Pt and Pd nanostructures, Nano Lett. 6 (2006) 833–838.
- [27] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc. 130 (2008) 1676–1680.
- [28] X. Chen, H.Y. Zhu, J.C. Zhao, Z.F. Zheng, X.P. Gao, Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports, Angew. Chem. Int. Ed. 47 (2008) 5353–5356.
- [29] J. Cao, B.D. Luo, H.L. Lin, S.F. Chen, Synthesis, characterization and photocatalytic activity of AgBr/H₂WO₄ composite photocatalyst, J. Mol. Catal. A: Chem. 344 (2011) 138–144.
- [30] G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species, Chemosphere 76 (2009) 1185–1191.
- [31] N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu, Synthesis of M@TiO₂ (M = Au, Pd, Pt) coreshell nanocomposites with tunable photoreactivity, J. Phys. Chem. C 115 (2011) 9136–9145.
- [32] Y.Y. Li, J.S. Wang, H.C. Yao, L.Y. Dang, Z.J. Li, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation, J. Mol. Catal. A: Chem. 334 (2011) 116–122.
- [33] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species TiO₂ photocatalysis using the fluorescence technique, Electrochem. Commun. 2 (2000) 207–210.
- [34] Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, X.K. Tan, Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO₂ nanocrystalline, J. Hazard. Mater. 150 (2008) 62–67.
- [35] J. Cao, B.D. Luo, H.L. Lin, B.Y. Xu, S.F. Chen, Thermodecomposition synthesis of WO₃/H₂WO₄ heterostructures with enhanced visible light photocatalytic properties, Appl. Catal. B: Environ. 111–112 (2012) 288–296.
- [36] H. Zhang, G. Wang, D. Chen, X.J. Lv, J.H. Li, Tuning photoelectrochemical performances of Ag-TiO₂ nanocomposites via reduction/oxidation of Ag, Chem. Mater. 20 (2008) 6543–6549.
- [37] Y.P. Liu, L. Fang, H.D. Lu, L.J. Liu, H. Wang, C.Z. Hu, Highly efficient and stable Ag/Ag₃PO₄ plasmonic photocatalyst in visible light, Catal. Commun. 17 (2012) 200–204.
- [38] S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, X.H. Bao, Effect of silver deposition on photocatalytic activity of ${\rm TiO_2}$, Chin. J. Catal. 25 (2004) 133–137.
- [39] C. Tabor, R. Murali, M. Mahmoud, M.A. El-Sayed, On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape, J. Phys. Chem. A 113 (2009) 1946–1953.
- [40] M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO₂, J. Appl. Phys. 48 (1977) 1914–1920.

- [41] H. Wang, J. Gao, T.Q. Guo, R.M. Wang, L. Guo, Y. Liu, J.H. Li, Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties, Chem. Commun. 48 (2012) 275–277.
- [42] X. Zhang, L.Z. Zhang, T.F. Xie, D.J. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO₂ heterostructures, J. Phys. Chem. C 113 (2009) 7371–7378.
- [43] C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev. 39 (2010) 4206–4219.
- [44] C.S. Pan, Y.F. Zhu, New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye, Environ. Sci. Technol. 44 (2010) 5570–5574.
- [45] H.F. Cheng, B.B. Huang, Y. Dai, X.Y. Qin, X.Y. Zhang, One-step synthesis of the nanostructured Agl/BiOl composites with highly enhanced visible-light photocatalytic performance, Langmuir 26 (2010) 6618–6624.
- [46] H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, Electrical and optical properties of TiO₂ anatase thin films, J. Appl. Phys. 75 (1994) 2042–2047.
- [47] X.F Zhou, C. Hu, X.X. Hu, T.W. Peng, J.H. Qu, Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al₂O₃ under visible-light irradiation, J. Phys. Chem. C 114 (2010) 2746–2750.
- [48] Y.Q. Yang, G.K. Zhang, S.J. Yu, X. Shen, Efficient removal of organic contaminants by a visible light driven photocatalyst Sr₆Bi₂O₉, Chem. Eng. J. 162 (2010) 171–177.
- [49] J. Kim, C.W. Lee, W. Choi, Platinized WO₃ as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol. 44 (2010) 6849–6854.
- [50] S. Meng, D.Z. Li, M. Sun, W.J. Li, J.X. Wang, J. Chen, X.Z. Fu, G.C. Xiao, Sono-chemical synthesis, characterization and photocatalytic properties of a novel cube-shaped CaSn(OH)₆, Catal. Commun. 12 (2011) 972–975.
- [51] W.M. Wu, S.J. Liang, Y. Chen, L.J. Shen, H.R. Zheng, L. Wu, High efficient photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over microcrystalline SrBi₂Nb₂O₉, Catal. Commun. 17 (2012) 39–42.
- [52] J. Bandara, J. Kiwi, Fast kinetic spectroscopy, decoloration and production of H₂O₂ induced by visible light in oxygenated solutions of the azo dye Orange II, New J. Chem. 23 (1999) 717–724.
- [53] M.C. Yin, Z.S. Li, J.H. Kou, Z.G. Zou, Mechanism investigation of visible light-induced degradation in a heterogeneous TiO₂/Eosin Y/Rhodamine B system, Environ. Sci. Technol. 43 (2009) 8361–8366.
- [54] D.T. Sawyer, J.S. Valentine, How super is superoxide? Acc. Chem. Res. 14 (1981) 393–400.
- [55] T. Tatsuma, K. Takada, T. Miyazaki, UV-light-induced swelling and visible-light-induced shrinking of a TiO₂-containing redox gel, Adv. Mater. 19 (2007) 1249–1251.
- [56] M. Antoniadou, P. Lianos, Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell, Appl. Catal. B: Environ. 99 (2010) 307–313.
- [57] H. Ueno, J. Nemoto, K. Ohnuki, M. Horikawa, M. Hoshino, M. Kaneko, Photoelectrochemical reaction of biomass-related compounds in a biophotochemical cell comprising a nanoporous TiO₂ film photoanode and an O₂-reducing cathode, I. Appl. Electrochem. 39 (2009) 1897–1905.
- [58] H. Liu, W.R. Cao, Y. Su, Y. Wang, X.H. Wang, Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI, Appl. Catal. B: Environ. 111–112 (2012) 271–279.
- [59] P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whangbo, Ag/AgBr/WO₃·H₂O: visible-light photocatalyst for bacteria destruction, Inorg. Chem. 48 (2009) 10697–10702.
- [60] W.W. Lu, S.Y. Gao, J.J. Wang, One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance, J. Phys. Chem. C 112 (2008) 16792–16800.
- [61] M. Sadeghi, W. Liu, T.G. Zhang, P. Stavropoulos, B. Levy, Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: oxidative degradation of CH₃OH vapor in contact with Pt/TiO₂ and cofumed TiO₂-Fe₂O₃, J. Phys. Chem. 100 (1996) 19466–19474.